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The Seventh International Conference on Stochastic Methods (ICSM-7) was held
June 2–9, 2022 at Divnomorskoe (near the town of Gelendzhik) at the Raduga sports
and fitness center of the Don State Technical University. ICSM-7 was organized by
the Steklov Mathematical Institute of Russian Academy of Sciences (Steklov Interna-
tional Mathematical Center; Department of Theory of Probability and Mathematical
Statistics); Moscow State University (Department of Probability Theory); National
Committee of the Bernoulli Society of Mathematical Statistics, Probability Theory,
Combinatorics, and Applications; and the Don State Technical University (Depart-
ment of Higher Mathematics). The conference chairman (presiding remotely) was
A. N. Shiryaev, a member of the Russian Academy of Sciences, who chaired the pre-
vious three conferences and also headed the Organizing Committee and the Program
Committee.

Many leading scientists from Russia, France, Portugal, and Tadjikistan took
part in ICSM-7. Russian participants came from Veliky Novgorod, Voronezh,
Zernograd, Kaluga, Kizil, Maikop, Moscow, Nizhni Novgorod, Rostov-on-Don,
Samara, St. Petersburg, Sochi, Syktyvkar, Taganrog, Tomsk, Tyumen, Ufa, and
Chelyabinsk. Approximately one-quarter of the talks were given by postgraduate and
undergraduate students. Twenty-nine talks were given at joint sessions, and 36 talks
were presented at parallel sessions.

Financial support from the Steklov International Mathematical Center (Steklov
Mathematical Institute of Russian Academy of Sciences), Russia, was invaluable for
the successful work of the conference.

At the opening of the conference, I. V. Pavlov, the Organizing Committee Deputy
Chair, read the following welcome message from A.N. Shiryaev to the conference
participants.

Dear Colleagues!

Despite numerous difficulties, our Rostov-on-Don probabilists have managed to
gather all of us in this wonderful Black Sea city at the 7th International Conference on
Stochastic Methods. This is essentially the only current large conference on probability
theory, mathematical statistics, and their application.

We all know that the classical probability theory is mainly associated with the
limiting theorems such as the law of large numbers, the central limit theorem, and the
Poisson theorem. This topic continues to occupy a worthy place in probability theory
and is presented at our conference. The limit theorems play an important role in
probability theory as a link, say, between models with discrete and continuous times,
and as a phenomenon that reveals the meaning of the very concept of probability.

∗Published electronically February 8, 2023. Part II will be published in Theory Probab. Appl., 68
(2023). The conference was supported by the Ministry of Science and Higher Education of the Russian
Federation (the grant to the Steklov International Mathematical Center, agreement 075-15-2022-265).
Originally published in the Russian journal Teoriya Veroyatnostei i ee Primeneniya, 67 (2022),
pp. 819–836.
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A large number of talks at the conference are devoted to applications of probability
theory and mathematical statistics, which corresponds to the very name of the con-
ference as a conference on stochastic methods. Last year, despite the pandemic, we
successfully held the 6th conference (via Zoom) in Moscow, where representatives of
all five continents participated. In total, 47 talks were given. The Moscow conference
was dedicated to the bicentenary of our wonderful mathematician, Pafnutii L’vovich
Chebyshev. The number of works of Chebyshev on the probability theory is small (just
four). But all of them played a decisive role in the formation and maturation of
probability theory.

This year, in July, the 33rd European conference on statistics, in the broad sense
of the word “statistics” (including mainly its economic aspects), was supposed to be
held. The World Congress of Mathematics in St. Petersburg (Russia) was also sched-
uled. Unfortunately, these events did not take place. We hope that, in the future,
ordinary contacts with foreign colleagues will continue and we will, for example, have
the opportunity to visit the 43rd conference on stochastic processes and their applica-
tions, which should be held in Lisbon (Portugal) in July 2023. In Soviet times, we
actively participated in the organization of international scientific activities. In this
regard, let us recall the Soviet–Japanese symposia and the first World Congress of the
Bernoulli Society in Tashkent (1986). I would like to hope that following the example
of our Rostov-on-Don colleagues, there will be young people who would organize con-
ferences of young researchers. Events like summer workshops are also rare in Russia
nowadays.

The next year will be marked by the 120th anniversary of the birth of A. N. Kol-
mogorov, and we should all work to have a successful 8th conference dedicated to this
date. We would be grateful for the advice, suggestions, and help.

It remains to wish everyone successful work, and, of course, many sunny days at
this beautiful Black Sea resort !

A. N. Shiryaev, I. V. Pavlov, P. A. Yaskov, T. A. Volosatova

The abstracts of the talks and presentations given at the conference are provided
below.

V. I. Afanasyev (Steklov Mathematical Institute of Russian Academy of Sci-
ences, Moscow, Russia). On local times of conditional random walks. 1

Let X1, X2, . . . be independent r.v.’s with the same arithmetic distribution with
maximal span 1, and let EX1 = 0, EX2

1 := σ2 ∈ (0,+∞). Consider a random walk

S0 = 0, Si =
∑i

j=1Xj , i ∈ N. Next, let T=min{i > 0: Si ⩽ 0}. Consider the stopped
random walk S̃i = Si for i < T and S̃i = 0 for i ⩾ T . We set ξ̃(k) = |{i ⩾ 0: S̃i = k}|.

Let {W+(t), t ⩾ 0} be a Brownian meander and l+(u) be its local time, i.e.,

l+(u) = limε→0 ε
−1

∫ +∞
0

I[u,u+ε](W
+(s)) ds for u > 0.

Theorem 1. As n→ ∞,{
σξ̃(⌊uσ

√
n⌋)√

n
, u ⩾ 0

∣∣∣∣ T > n

}
→ {l+(u), u ⩾ 0},

where the symbol → means the convergence in distribution in the space D[0,+∞) with
the Skorokhod topology.

1This work was performed at the Steklov International Mathematical Center with the sup-
port of the Ministry of Science and Higher Education of the Russian Federation (agreement
075-15-2019-1614).
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Let {W ↑
0 (t), t ⩾ 0} be a Brownian high jump and l↑0(u) be its local time, i.e.,

l↑0(u) = limε→0 ε
−1

∫ +∞
0

I[u,u+ε](W
↑
0 (s)) ds for u > 0. We set Tx = min{i∈N : S̃i>x}

for x > 0.

Theorem 2. As n→ ∞,{
σ2ξ̃(⌊un⌋)

n
, u ⩾ 0

∣∣∣∣ Tn < +∞
}

→ {l↑0(u), u ⩾ 0}.

L.G. Afanasyeva (The author is deceased. Former address: Lomonosov Mos-
cow State University, Moscow, Russia), E. E. Bashtova (Lomonosov Moscow State
University, Moscow, Russia). Asymptotic analysis of systems with orbit with
regenerative input flow. 2

Consider an m-channel queuing system. The service times {ηi}∞i=1 on each server
are i.i.d. r.v.’s. If there is at least one free server at the moment of customer arrival,
then the customer is processed immediately. If all the servers are busy, then the
customer is sent to the so-called orbit, from where it repeats attempts to get to
service. We study the process Q(t), which is the number of customers in the system.
It is assumed that the input flow X( · ) is a regenerative flow with regeneration periods
{τi}∞i=1 and increments over the regeneration period {ξi}∞i=1. Units from the orbit with
j customers arrive in a Poisson stream of intensity ν(j). Conditions for ergodicity
of such systems were obtained in [1]. We prove the following theorem for overloaded
systems.

Theorem. Let ρI = λb/m > 1, Eτ ri < ∞, Eξri < ∞, Eηri < ∞ for some r > 2
and j−1+1/rν(j) → ∞ as j → ∞. Then there exists a standard Wiener process W
such that sup0⩽u⩽t ∥Q(u)−(ρI−1)u−σIW (u)∥ = o(t1/r) a.s., where σ2

I = σ2
X+mσ2

S.

REFERENCES

[1] L. G. Afanaseva, Stability conditions for retrial queueing systems with regenerative input flow,
J. Math. Sci. (N.Y.), 254 (2021), pp. 446–455, https://doi.org/10.1007/s10958-021-05317-2.

E.V. Alymova (Russian Customs Academy, Rostov branch, Rostov-on-Don,
Russia). Software implementation and statistical estimate for equivalence
of models of classification of symbols in Latin alphabet based on impulse
and convolution neural networks.

We consider the problem of recognition of 62 printed characters of the Latin
alphabet by convolution [1] and impulse [2] neural networks. 62 datasets of 983
images of 128× 128 points are formed for 26 letters (in both registers) and 10 digits.

The convolution network is based on Tensorflow and contains nine layers and
97,278 training parameters. On average, 89 characters out of 100 are recognized
correctly, i.e., the recognition accuracy reaches 89%. We single out sets of symbols
within which a symbol is assumed to lie in a single class: {i, l, j, 1}, {g, 9}, {c,C},
{p,P}, {o, 0,O}. Subject to this proviso, the convolution network recognizes, on
average, 93 symbols out of 100, i.e., its mean accuracy is 93%.

2Supported by the Russian Foundation for Basic Research (grant 20-01-00487).

https://doi.org/10.1007/s10958-021-05317-2
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The impulse neural network is based on NengoDL. With the above union of
classes, the impulse neural network recognizes, on average, 91 symbols out of 100, i.e.,
its mean accuracy is 91%.

Theorem. The performance of the model of classification of symbols of the Latin
alphabet with an impulse neural network with χ2 = 2.4671, Pvalue = 0.07437 for the
McNemar test, and 5% significance level is similar to that based on a convolution
network.

REFERENCES

[1] M. Tripathi, Analysis of convolutional neural network based image classification techniques,
J. Innovative Image Processing (JIIP), 3 (2021), pp. 100–117, https://doi.org/10.36548/jiip.2021.
2.003.

[2] J. D. Victor and K. P. Purpura, Metric-space analysis of spike trains: Theory, algorithms
and application, Network, 8 (1997), pp. 127–164, https://doi.org/10.1088/0954-898X 8 2 003.

A.M. Atayan (Don State Technical University, Rostov-on-Don, Russia). Eval-
uation of the operating time of a computing system based on correlation
analysis. 3

To increase the accuracy of mathematical models related to solution of problems
in hydrophysics, such models should include factors with considerable effect on the
underlying processes [1]. Calculation time can be considerably reduced with the use of
multiprocessor systems. However, the time efficiency of a computing system operating
time may be far from expected. This calls for a theoretical analysis of the calculation
time based on correlation analysis.

Theorem. A multiple regression model is considered. Let ti be the total execution
time of a computation system (in seconds), and let ni, ki be the explanatory factors
(the volume of the transmitted data and the number of utilized computational nodes,
respectively). Then the latency time can be found by

ti =

{
5.21 · 10−6 + 1.53 · 10−7ki, ni ⩽ 512,

6.733 · 10−6ki, ni > 512,
where i = 1, 2, . . . , p.

The transfer time of a single datum is tx = 3.3 · 10−9 s.

REFERENCES

[1] A. I. Sukhinov, A. E. Chistyakov, A. V. Shishenya, and E. F. Timofeeva, Predictive modeling
of coastal hydrophysical processes in multiple-processor systems based on explicit schemes, Math.
Models Comput. Simul., 10 (2018), pp. 648–658, https://doi.org/10.1134/S2070048218050125.

E.E. Bashtova (Lomonosov Moscow State University, Moscow, Russia). On
strong approximation of some types of random flights. 4

Let ε = {εn, n ⩾ 0} be i.i.d. random vectors on the unit sphere in Rk, and let
{Tn, n ⩾ 0} be an increasing sequence of r.v.’s independent of ε (T0 = 0). A random
flight (see [3]) is a continuous random process X = {X(t), t ⩾ 0}, whose trajectory

3Supported by the Russian Foundation for Basic Research (grant 20-31-90105).
4Supported by the Russian Foundation for Basic Research (grant 20-01-00487).
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on the interval [Tn−1, Tn] (n ⩾ 1) is linear and whose direction is given by realization
of the random vector εn, Eε1 = 0, Dε1 = σ2

ε . Let N(t) = min{n ⩾ 0: Tn > t}, t ⩾ 0.

Theorem. Let N(t) be a regenerative flow [1], [2]. If Eepτi <∞ for some p > 0,
then, on the same probability space, one can define a process X and a d-dimensional
Wiener process {Wt, t ⩾ 0} so that

P
(
sup
u⩽t

|X(u)− σε
√
Eτ1W (u)| > a ln t+ x

)
⩽ be−cx

for all t ⩾ 1, x > 0 and some constants a, b, c > 0.

REFERENCES

[1] L. G. Afanasyeva and E. E. Bashtova, Coupling method for asymptotic analysis of queues
with regenerative input and unreliable server, Queueing Syst., 76 (2014), pp. 125–147, https:
//doi.org/10.1007/s11134-013-9370-x.

[2] E. Bashtova and A. Shashkin, Strong Gaussian approximation for cumulative processes, Sto-
chastic Process. Appl., 150 (2022), pp. 1–18, https://doi.org/10.1016/j.spa.2022.04.003.

[3] Y. Davydov and V. Konakov, Random walks in nonhomogeneous Poisson environment, in
Modern Problems of Stochastic Analysis and Statistics, Springer Proc. Math. Stat. 208, Springer,
Cham, 2017, pp. 3–24, https://doi.org/10.1007/978-3-319-65313-6 1.

A.F. Beknazaryan (University of Tyumen, Tyumen, Russia), H. Sang (The
University of Mississippi, Oxford, MS, USA), Y. Xiao (Michigan State University,
East Lansing, MI, USA). Cramér type moderate deviations for random fields.

Let {Xnj , n ∈ N, j ∈ Zd} be a random field with zero means, and let, for each n,
the cumulant generating functions Lnj(z) = lnEezXnj of the r.v.’s Xnj , j ∈ Zd, be
analytic in the disk |z| < Hn in which |Lnj(z)| ⩽ cnj . Assume that Xnj , j ∈ Zd,
are independent for each n ∈ N and that Sn =

∑
j∈Zd Xnj , Bn =

∑
j∈Zd DXnj ,

Cn =
∑

j∈Zd cnj , and Fn(x) = P(Sn < x
√
Bn ) are well defined and finite, where

BnH
2
n → ∞ and Cn = O(BnH

2
n). Let Φ(x) be the distribution function of the

standard normal r.v. We prove the following theorem that extends [1] and [2].

Theorem. Let x ⩾ 0 and x = o(Hn

√
Bn ). Then

1− Fn(x)

1− Φ(x)
= exp

{
x3

Hn

√
Bn

λn

(
x

Hn

√
Bn

)}(
1 +O

(
x+ 1

Hn

√
Bn

))
,

where λn(t) is a power series that converges for sufficiently small |t| uniformly with
respect to n.

REFERENCES

[1] H. Cramér, Sur un nouveau théorème-limite de la théorie des probabilités, in Les sommes et
les fonctions de variables aléatoires, Actualités Sci. Indust. 736, Hermann & Cie, Paris, 1938,
pp. 5–23.

[2] V. V. Petrov, Generalization of Cramér’s limit theorem, Uspehi Matem. Nauk (N.S.), 9 (1954),
pp. 195–202 (in Russian).
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G. I. Beliavsky, N.V. Danilova, G.A. Ougolnitsky (Southern Federal
University, Rostov-on-Don, Russia). A game model of investment portfolio
management.

The optimal portfolio problem is considered as an N -round stochastic Stackelberg
game between two players, one of whom (unit investment fund (UIF)) is engaged in
investments, and the other (agent) allocates funds for these investments. The leading
player (UIF) forms a portfolio Z and stimulates receipts of funds from the agent,
providing the agent with profitability K exceeding the known value g with probabil-
ity P (Z). An optimal strategy of the agent for probability P (Z) of portfolio Z is
a binary mixed strategy x(Z) with probability distribution P(x(Z) = 1) = P (Z) and
P(x(Z) = 0) = 1− P (Z). Thus, the Stackelberg equilibrium in this game is reached
on ⟨Z∗, x(Z∗)⟩. Here, Z∗ is the solution of the optimization problem max(Z,I)=1 P (Z).
In order to achieve the Stackelberg equilibrium, both the UIF and the agent rely on
real-time learning by solving the following stochastic programming problems. The
problem of the UIF is to calculate the value min(Z,I)=1 ER(g + 1− α(Z,R))+, where
α ∈ (0, 1) is the asset return vector, while the UIF monitors the sequence of return
vectors. The agent calculates minEδ(δ− y)2 by observing the sequence δi = I{Ki⩾g}.
The following result is used: Eξ(g + 1− ξ)+ ⩾ P(ξ ⩽ g).

Ya. I. Belopolskaya (Sirius University, Sochi, Russia; St. Petersburg Depart-
ment of Steklov Mathematical Institute of Russian Academy of Sciences, Russia).
Probabilistic representation of a solution to Cauchy–Robin problem for
a system of nonlinear parabolic equations. 5

We prove the following result, which extends our earlier result for d1 = 1.

Theorem. Let Aq ∈ Rd ⊗Rd, cq ∈ R be smooth bounded functions, Aq(t, x, u)

=
∫
Rd

+

∑d1

m=1Aqm(x − y)um(t, y) dy, ρ be a mollifier, and ξ0q be independent r.v.’s,

which do not depend on independent Wiener processes wq(t) ∈ Rd. Then there exists
a unique solution (ξq(t), kq(t), uq(t, y)) of the system

ξq(t) + kq(t) = ξ0q +

∫ t

0

Aq(s, ξq(s), u) dwq(s), P{ξ0q ∈ dy} = uq(0, y) dy,

kq(t) =

∫ t

0

n(ξq(s)) d|kq|(s), |kq|(t) =
∫ t

0

I∂G(ξq(s)) d|kq|(s),

uq(t, y) = E

[
ρ(y − ξq(t)) exp

{∫ t

0

cq(s, ξq(s), u) ds

}]
, q = 1, . . . , d1,

and vq(t, y) =
∫
G
ρ(y − x)uq(t, x) dx satisfy weakly the problem

∂vq
∂t

=
1

2
Tr∇2[(AqA

∗
q)(y, v)vq(t)] + cq(y, v)vq(t, y), y ∈ G = Rd

+,

vq(0, y) = v0q(y), y ∈ G,

d∑
k=1

∇yk
[(AqA

∗
q)(y, v)vq]nk(y) = 0, y ∈ ∂G.

5Supported by the Russian Science Foundation (grant 22-21-00016).
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D.V. Bondarenko, A.V. Nikitina (Don State Technical University, Rostov-on-
Don, Russia). Evaluation of the effectiveness of heuristic optimization meth-
ods with random distribution of input data. 6

We prove the following theorem, which involves the pollutant concentration func-
tion from [1].

Theorem. Let the pollutant concentration function have the form

C(x, y) =

sin
π(x− 10)

10
sin

π(y − 10)

10
, (x, y) ∈ D,

0, (x, y) /∈ D,

D = {(x, y) ∈ R2 : x ∈ [10, 20], y ∈ [10, 20]}.

Then the heuristic method of harmonic search with random distribution of input data
produces a global maximum point (15.00057081044254, 14.9991222560702) where the
function is equal to 0.99999994590178. The execution time is 0.496674 seconds under
the condition that the limit on the number of improvisations in the iterative part is set
to 10,000, and the number of harmonics that can be stored in memory is set to 100.
The probability of choosing from memory harmonics pc is 0.8, and the probability of
modification pm is 0.1.

REFERENCES

[1] A. M. Atayan, A. V. Nikitina, A. I. Sukhinov, and A. E. Chistyakov, Mathematical modeling
of hazardous natural phenomena in a shallow basin, Comput. Math. Math. Phys., 62 (2022),
pp. 269–286, https://doi.org/10.1134/S0965542521120034.

A.E. Chistyakov (Don State Technical University, Rostov-on-Don, Russia),
I. Yu. Kuznetsova (Southern Federal University, Rostov-on-Don, Russia). Stabil-
ity estimation of the equation for pressure calculation with due account of
the collision time of medium molecules. 7

We propose an approach to constructing a mathematical model of hydrodynamics
based on a relation between the kinetic and hydrodynamic descriptions of continuous
fluid. According to [1], in the case of a spatially one-dimensional layer, there is
a constant locally Maxwellian distribution f0i = ρi exp{−(ζ−Ui)/(2RPi)}/(2RPi)

3/2,
where ρi is the density of substance, R is the gas constant, Pi is the pressure, ζ is
the molecule velocity, and Ui is the macroscopic velocity, at the nth time step in ith
spatial cell. It is known (see [1]) that, for solution of hydrodynamics problems, the
continuity equation can be augmented with the term τ∗ρ′′tt appearing if the delay in the
transmission of momentum is taken into account when the collision of molecules can
be represented by a discrete function, where τ∗ ∼ h/c is the regularization parameter
or the characteristic time between collisions of molecules, h is the computational grid
step, and c is the speed of sound.

Theorem. The implicit difference scheme approximating the homogeneous pres-
sure equation P ′′

tt/c
2 − ∆P = −(ρ′t + ∇(ρṼ))/τ, where τ is the time step, and Ṽ is

the intermediate velocity field calculated without regard to pressure, is absolutely stable
and has the first order of accuracy.

6The study was carried out with partial financial support from the Council for Grants of the
President of the Russian Federation (project MD-3624.2021.1.1).

7The study was carried out with partial financial support from the Council for Grants of the
President of the Russian Federation (project MD-3624.2021.1.1).

https://doi.org/10.1134/S0965542521120034
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[1] B. N. Chetverushkin, Resolution limits of continuous media mode and their mathematical
formulations, Math. Models Comput. Simul., 5 (2013), pp. 266–279, https://doi.org/10.1134/
S2070048213030034.

E.G. Chub, V.A. Pogorelov (Don State Technical University, Rostov-on-Don,
Russia). Stochastic nonlinear dynamics model of an information-measuring
complex gyrostabilizer of a track-testing car.

We study the dynamics of motion of a gyrostabilized information-measuring com-
plex of a track-testing car (IMCTTC) under the action of interference [1], [2], [3].
A moment method is applied for constructing a moment approximation of the pos-
terior probability density of IMCTTC for the stochastic model of a gyrostabilized
IMCTTC in the “object–observer” form Ẏ = F (Y, t)+F0(Y, t)ξ, where Y is the state
vector describing the object dynamics, F , F0 are known nonlinear functions deter-
mined from IMCTTC performance conditions, and ξ is the vector of random disturb-
ing accelerations described, in general, by Gaussian noise with zero expectation and
a known intensity matrix. Our method is capable of enhancing the performance of
advanced IMCTTCs.

REFERENCES

[1] V. Pogorelov and E. Chub, Markov model of data measurement complex for track geometry
car, E3S Web Conf., 224 (2020), 02029, https://doi.org/10.1051/e3sconf/202022402029.

[2] S. V. Sokolov, V. A. Pogorelov, and E. G. Chub, Suboptimal stochastic control synthesis for
3D orientation of a gyrostabilized platform, in 21st Saint Petersburg International Conference
on Integrated Navigation Systems, ICINS 2014 — Proceedings, Concern “Electropribor,” Saint
Petersburg, 2014, pp. 206–209.

[3] A. S. Mit’kin, V. A. Pogorelov, and E. G. Chub, Using the Pearson distribution for synthesis
of the suboptimal algorithms for filtering multi-dimensional Markov processes, Radiophys. and
Quantum Electronics, 58 (2015), pp. 224–232, https://doi.org/10.1007/s11141-015-9596-z.

A.G. Danekyants, N.V. Neumerzhitskaia, I. V. Pavlov, I. V. Tsvetkova
(Don State Technical University, Rostov-on-Don, Russia). Some results on signed
interpolating deflators.

We continue the study of signed interpolating deflators started in [1]. Consider
a stochastic basis

(
Ω, F = (Fk)

K
k=0,P

)
, where Ω is a finite set, K < ∞, and F0 is

trivial. Let A be an atom in Fk (0 ⩽ k < K), let Bi (i = 1, 2, . . . ,m) be atoms in
Fk+1, and let

A = B1 +B2 + · · ·+Bm, a :=Zk|A, bi :=Zk+1|Bi , pi :=P(Bi), di :=Dk+1|Bi

(in general, the splitting index m of an atom A and the numbers a, bi, pi, di depend
on A). A signed deflator D = (Dk,Fk,P)Kk=0 of a process Z = (Zk,Fk)

K
k=0 is called

admissible if
∑

i∈I pidi ̸= 0 for any 0 ⩽ k < K, for any atom A ∈ Fk, and for any
nonempty set I ⊂ {1, 2, . . . ,m}.

Theorem. Let m ⩾ 2 for any k, 0 ⩽ k < K, and any atom A ∈ Fk, and let
a, b1, . . . , bm be distinct. Then there exists an admissible signed deflator D satisfying
the universal Haar uniqueness property (UHUP) (see [1]). If D is positive, then the
UHUP for D coincides with the UHUP for the martingale measure of the process Z
corresponding to the deflator D.

https://doi.org/10.1134/S2070048213030034
https://doi.org/10.1134/S2070048213030034
https://doi.org/10.1051/e3sconf/202022402029
https://doi.org/10.1007/s11141-015-9596-z
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D.V. Dimitrov (Lomonosov Moscow State University, Moscow, Russia). Sta-
tistical methods for determining heterogeneities of fibrous materials from
statistics of nearest neighbors. 8

Estimates of nearest neighbors with Kullback–Leibler divergence [1] are applied
to searching heterogeneity domains in fibrous materials. A model is studied with an
observer knowing independent r.v.’s {Xi, Ti, i ∈ {1, . . . , ζn}}, where Xi with values
in Rd1 ∩Π is the center of the ith fiber, Π ∈ B(Rd1) is the ambient bounded material,
law(Xi) = law(X); Ti = ξi · I{Xi ∈ R0}+ηi · I{Xi ∈ Π\R0} with values in Rd2 is the
label (direction) of the ith fiber, law(ξi) = law(ξ), law(ηi) = law(η), R0 ∈ B(Rd1)∩Π
is the true heterogeneity domain, and ζn ∼ Pois(λn · µ(Π)), λn > 0, λn → ∞,

n → ∞. For each set R from some family of sets R, we construct a statistic T̂n(R)
based on estimation of nearest neighbors with Kullback–Leibler divergence between
the distribution of labels Ti of fibers inside a screen R (i.e., for Xi ∈ R) and outside it.

Next, it is assumed that R̂n := argmaxR∈R T̂n(R).

Theorem. Assume that, for some ε,R > 0, N ∈ N, f ∈ {pξ, pη}, g ∈ {pξ, pη},
the functionals Kf,g(2, N), Qf,g(ε,R), Tf,g(ε,R) are finite. Then

P
(
R̂n ∈ argmax

R∈R
dΠ(R,R0)

)
→ 1, n→ ∞.

Here, dΠ(R,R0) := |µ(RR0)/µ(R) − µ(RR0)/µ(R)|, R := Π \ R, and pξ and pη are
densities of the r.v.’s ξ and η, respectively; the definitions of the functionals Kf1,f2 ,
Qf1,f2 , Tf1,f2 for densities f1, f2 can be found in [1].
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M.L. Esqúıvel (FCT Nova and CMA, New University of Lisbon, Portugal),
N. P. Krasii (DSTU, Rostov-on-Don, Russia). On structured random matrices
defined by matrix substitutions.

We introduce matrix substitutions (see [1]) as a way to define structured nonran-
dom matrices of arbitrarily large size, which can be considered as generating random
matrices having a structure and independent entries. We have a theorem of conver-
gence in law for random matrices (see [2]).

Consider M+∞ := {M = [aij ]i,j⩾1 : aij ∈ Zp} = Z
(N\{0}×N\{0})
p .

Theorem (convergence in law of random structured matrices). Assume that
(a) σ : Zp → M<∞

d×d(Zp) is a global substitution map;
(b) Φσ is the corresponding matrix substitution map defined on M+∞;

8This work was supported by the grant “Modern Problems of Fundamental Mathematics and
Mechanics” at Lomonosov Moscow State University.
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(c) M∞ is a fixed point of Φσ such that M0 ∈ M+∞ and Mn = Φσ(Mn−1), n ⩾ 1,
M∞ = limn→+∞Mn.

Let Mn(X#) and M∞(X#) be random structured matrices with Mn and M∞
skeletons, respectively. Then

Law(Mn(X#)) −−−−−→
n→+∞

Law(M∞(X#)).

As an application we define a random surface canonically associated with a ran-
dom matrix fixed point having a skeleton fixed point of a matrix substitution map.
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A.M. Fedotkin, N. S. Markina (National Research Lobachevsky State Uni-
versity of Nizhnii Novgorod, Russia). Cyclic algorithm with extension and
afterservice for management of conflict flows of heterogeneous customers.

A mathematical model of a real system of cyclic management of conflict flows of
heterogeneous customers was studied in [1]. A mathematical model of flows of this
kind was constructed and studied in [2]. For j = 1, 2, a server in states Γ(2j−1) or
Γ(2j) processes and respectively afterservices only the flow Πj . A change of the current
state of the server or its extension occurs at random moments τi, i = 0, 1, . . . . The
random sequence {(Γi,κ1,i,κ2,i, ξ

′
1,i−1, ξ

′
2,i−1); i = 0, 1, . . . }, where Γi is the server

state in the interval [τi, τi+1), κj,i ⩾ 0 is the flow queue size, Πj at time τi, and
ξ′j,i ⩾ 0 is the number processed customers in the flow Πj on the interval [τi, τi+1), is
a mathematical model of such systems.

Theorem. The sequence {(Γi,κ1,i,κ2,i, ξ
′
1,i−1, ξ

′
2,i−1); i = 0, 1, . . . } with given

initial distribution of the vector (Γ0,κ1,0,κ2,0, ξ
′
1,−1, ξ

′
2,−1) is a homogeneous multi-

variate Markov chain.
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Yu.E.Gliklikh (VSU, Voronezh, Russia). On a certain stochastic equation
with mean derivatives, connected with hydrodynamics. A description of the
backward mean derivative D∗, the symmetric mean derivative (the current veloc-
ity) DS, and the group of Sobolev Hs-diffeomorphisms of a flat n-dimensional torus,
s > n/2 + 2, can be found in [1].

On the group of Hs-diffeomorphisms of a flat n-dimensional torus, we construct
a process W (σ)(t) from a standard Wiener process σw(t) in Rn, where σ > 0 is a con-
stant. By F we denote the regression on the torus constructed from D∗D∗(σw(t)).
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This vector field is a vector in the tangent space in the unit e to the group of
Hs-diffeomorphisms. By right shifts, we translate this vector onto the entire group,
thereby obtaining the right-invariant vector field F . It is shown that Wσ(t) satisfies
the following system of differential equations with mean derivatives:

D∗D∗W
σ(t) = F , D∗W

σ(t) = 2DSW
σ(t).

We let D∗W
(σ)(t) = u(t)W (σ)(t) translate, by right shifts, all u(t)W (σ)(t) to the

tangent space in the unit e of the group. After this translation, the conditional
expectation involved in the definition of the mean derivative is carried over into the
ordinary expectation. Thus, in the tangent space in unit, we obtain a deterministic
curve ue(t), which is a nonautonomous vector field on the torus.

Theorem. The curve ue(t) on the torus satisfies the Burgers equation with vis-
cosity coefficient σ2/2 and external force F, and also obeys the continuity equation.
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A.A. Gushchin (Steklov Mathematical Institute of Russian Academy of Sci-
ences, Moscow, Russia), M.A. Nedoshivin (Lomonosov Moscow State University,
Moscow, Russia). On Perkins’ construction in the Skorokhod embedding
problem. 9

Let Π denote the class of joint laws Law(Bτ , Bτ ) for the value of a Brownian
motion B = (Bt)t⩾0 at a finite stopping time τ and its maximum Bτ := supt⩽τ Bt

in the time interval from 0 to τ . For an explicit description of this class, see [1]
and [2]. Given an arbitrary measure µ on R, we pose the problem of finding τ that
minimizes the maximum Bτ , in the sense of stochastic ordering, among all τ with
Law(Bτ ) = µ. The solution was found in [3] for µ with zero mean and in [4] in the
general case. We supplement these results based only on the description of the set Π.
Given a measure π, we denote by π1 and π2 its projections onto the coordinates.

Theorem. For any measure µ, the minimum ν := minπ∈Π: π1=µ π2 (in the sense
of stochastic ordering) exists. In the class Π, there is only one distribution π with
π1 = µ and π2 = ν.
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Probab. Statist. 12, Birkhäuser Boston, Boston, MA, 1986, pp. 172–223, https://doi.org/10.
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M. I. Ilolov, D. Sh. Rakhmatov (Tajik Academy of Sciences, Dushanbe, Tajik-
istan). The Cauchy problem for abstract fractional stochastic differential
equations.

In the Hilbert spaces H, H1, consider the fractional Cauchy problem

(1) Dα
t X(t) =

(
AX(t) + F (t,X(t))

)
dt+B(t,X(t)) dW (t), t ∈ [0, T ], X(0) = ξ,

where 0 < α < 1, A is a nearly sectorial operator, the mappings F (t,X):
[0, T ]×H → H, B(t,X) : [0, T ] ×H → LHS(H,Q

1/2H1) satisfy the Lipschitz condi-
tion and the linear growth condition,W (t) is a Wiener process with values in QT/2H1,
and Q is a nonnegative trace operator in H1. We are interested in the solution of
problem (1) satisfying the condition

(2) P

(∫ t

0

∥X(s)∥2 ds <∞
)

= 1.

The following theorem extends the results of [1].

Theorem. Let ξ be a measurable H-valued r.v. Then problem (1) has a solution,
which is unique up to an equivalence among the processes satisfying (2).
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A.V. Kolnogorov (Yaroslav-the-Wise Novgorod State University, Veliky Nov-
gorod, Russia). Poissonian two-armed bandit: A Bayesian approach. 10

We consider a two-armed bandit problem on the control horizon [0, T ] with the
incomes that follow the rule e−ρt, where t is the current time (0 < T ⩽ +∞, ρ > 0).
The intensities λ1, λ2 are given by the prior distribution density µ(λ1, λ2) on the
set Θ. The Bayesian risk is equal to the minimum of the expectation of losses of the
cumulative income with respect to the value attainable for known λ1, λ2.

Theorem. The Bayesian risk can be found by solving the partial differential equa-
tion

min
(
R′

t1 +R(X1 + 1, t1, X2, t2) + e−ρtg(1)(X1, t1, X2, t2),

R′
t2 +R(X1, t1, X2 + 1, t2) + e−ρtg(2)(X1, t1, X2, t2)

)
= 0

backwards with the initial condition R(X1, t1, X2, t2) = 0 for t1+t2 = T . The Bayesian
strategy prescribes choosing, at time t = t1 + t2, the ℓth action if the ℓth term on the
left-hand side of the equation is smaller. Here, t1, t2 are the current cumulative times
of both actions’ applications, and X1, X2 are the corresponding cumulative incomes,

g(1)(X1, t1, X2, t2) =

∫∫
Θ

(λ2 − λ1)
+λX1

1 e−λ1t1λX2
2 e−λ2t2µ(λ1, λ2) dλ1 dλ2,

g(2)(X1, t1, X2, t2) =

∫∫
Θ

(λ1 − λ2)
+λX1

1 e−λ1t1λX2
2 e−λ2t2µ(λ1, λ2) dλ1 dλ2.

The Bayesian risk is R(0, 0, 0, 0).

10Supported by the Russian Foundation for Basic Research (grant 20-01-00062).
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For the results in the case T < +∞, ρ = 0, see [1].
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E.V. Kudryavtsev, M.A. Fedotkin (National Research Lobachevsky State
University of Nizhnii Novgorod, Russia). Study of limit properties of a system
of adaptive management of conflicting Cox–Lewis flows.

We consider a queuing system described by a vector Markov sequence
{(Γi, κ1,i, κ2,i); i ⩾ 0} [1], [2]. Conflicting input flows of inhomogeneous customers
were studied in [3]. Let Wi(z1, z2), i ⩾ 0, be generating functions of one-dimensional
distributions of the sequence {(Γi, κ1,i, κ2,i); i ⩾ 0}. The following theorem holds.

Theorem. If, for some z1, z2 > 1, the initial distribution of {(Γi, κ1,i, κ2,i); i⩾0}
satisfies W0(z1, z2) < ∞, then, for existence of a limit distribution of this sequence,
it is necessary and sufficient that the generating functions W6i(z1, z2) be bounded
uniformly in i in some neighborhood of (1, 1).
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[2] E. V. Kudryavtsev and M. A. Fedotkin, Research of the mathematical model of adaptive
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of Tver State University. Ser. Appl. Math.], 1 (2019), pp. 23–37 (in Russian), https://doi.org/
10.26456/vtpmk522.

[3] M. A. Fedotkin, A. M. Fedotkin, and E. V. Kudryavtsev, Dynamic models of heterogeneous
traffic flow on highways, Autom. Remote Control, 81 (2020), pp. 1486–1498, https://doi.org/10.
1134/S000511792008010X.

O.E. Kudryavtsev (RussianCustomsAcademy, Rostov branch, Rostov-on-Don,
Russia; Southern Federal University, Rostov-on-Don, Russia). Pricing double bar-
rier options under Lévy processes of unbounded variation.

A method of simplified Wiener–Hopf factorization for pricing double barrier
options

V (T, x) = Ex
[
e−rT1{X T>0}1{XT<h}G(XT )

]
is constructed, where G(x) is the payoff function, T is the maturity, h is the upper
barrier, Xt is a Lévy process, and X t = inf0⩽s⩽tXs and Xt = sup0⩽s⩽tXs are the
processes of its infimum and supremum, respectively. The following theorem extends
the results of [1] to the case of unbounded variation of jumps.

Theorem. Let N be a sufficiently large natural number. We set q = T/N,
v0(q, x) = G(x)1(0,h)(x) and define, for n = 1, 2, . . . ,

vn(q, x) = Ex

[
vn−1(q,XTq+r )

1 + r/q
1{X Tq+r

>0}1{XTq+r
<h}

]
,

where the random Tq+r has exponential distribution Exp(q + r). Then, for a fixed x,
the sequence vN (N/T, x) converges to V (T, x) as N → ∞.
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pp. 273–291, https://doi.org/10.1007/978-3-030-76829-4 15.

V.A. Kutsenko, E.B. Yarovaya (Lomonosov Moscow State University, Mos-
cow, Russia). Branching random walk in random environment with Gumbel
potential. 11

We consider a branching random walk (BRW) on Zd with continuous time in
random environment. A BRW is based on a simple symmetric random walk. At each
point Zd, a particle either dies or produces two offsprings with random intensities
b0(ω, x) and b2(ω, x). In a fixed environment, the moments of the number of offsprings
of a particle at a point x at time t = 0 are random and denoted by mn(t, ω, x) for the
entire population and bymn(t, ω, x, y) for the subpopulation at point y. We extend the
proofs from [1] to BRWs with random environment (potential) V (t, ω, x) = b2(ω, x)−
b0(ω, x) with Gumbel type distribution.

Theorem. Let lnP(V > z) ∼ −ez as z → ∞. Then, for the moments ⟨mp
n⟩ with

initial conditions mn(0, · , y) = δy( · ) and mn(0, · ) ≡ 1,

lim
t→∞

ln⟨mp
n⟩

ln⟨epnV t⟩
= 1,

where n, p ∈ N, and the angular brackets denote the expectation with respect to the
probability measure generated by the random environment.
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D.F. Kuznetsov (Peter the Great Saint-Petersburg Polytechnic University, Rus-
sia). A new approach to series expansion of iterated Stratonovich stochastic
integrals of arbitrary multiplicity with respect to components of a multi-
dimensional Wiener process.

The following theorem is proved in [1, sections 2.10–2.15].

Theorem. Let ψ1(τ), . . . , ψk(τ)∈C1[t, T ], and let {ϕj(x)}∞j=0 (ϕ0(x)=1/
√
T−t,

ϕj(τ) ∈ C[t, T ]) be a basis in L2[t, T ] such that the conditions 1–3 of Theorem 2.30
in [1] are met. Then

J∗[ψ(k)]
(i1...ik)
T,t =

∫ T

t

ψk(tk)· · ·
∫ t2

t

ψ1(t1) ◦ dW(i1)
t1 · · · ◦ dW(ik)

tk
= l. i.m.

p→∞
S
(i1...ik)p
T,t ,

where S
(i1...ik)p
T,t =

∑p
j1,...,jk=0 Cjk...j1ζ

(i1)
j1

· · · ζ(ik)jk
, ζ

(i)
j =

∫ T

t
ϕj(τ) dW

(i)
τ are i.i.d.

N(0, 1)-r.v.’s (i ̸= 0), k ∈ N, Cjk...j1 is the Fourier coefficient corresponding to
the kernels K(t1, . . . , tk) = ψ1(t1) · · ·ψk(tk)1{t1<···<tk} (k ⩾ 2) and K(t1) = ψ1(t1),

11Supported by the Russian Foundation for Basic Research (grant 20-01-00487).
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t1, . . . , tk ∈ [t, T ], i1, . . . , ik = 0, 1, . . . ,m, and dW
(i)
τ and ◦ dW(i)

τ are the Itô and

Stratonovich differentials, respectively, W
(0)
τ = τ . Moreover, for ψ1(τ), . . . , ψk(τ) ∈

C1[t, T ], we have E
(
J∗[ψ(k)]

(i1...ik)
T,t − S

(i1...ik)p
T,t

)2
⩽ C/p1−ε for the case of Legendre

polynomials and the Fourier basis, where ε = 0 (the Fourier basis for k = 1, . . . , 5 or
polynomial basis for k = 1, 2, 3) or ε > 0 is arbitrarily small (a polynomial basis for
k = 4, 5), and C <∞ is independent of p.
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V.L. Litvinov (Samara State Technical University, Samara, Russia). Stochas-
tic longitudinal oscillations of a viscoelastic rope with moving boundaries
with due account of damping forces.

The wide use of mechanical objects with moving boundaries in engineering calls
for the development of methods of their calculation. In the case of longitudinal oscilla-
tion, the principal effect on damping comes from elastic imperfections of the material
of the oscillated object [1]. The study of viscoelasticity involves the analysis of sto-
chastic stability of stochastic viscoelastic systems, their reliability, etc. We consider
stochastic linear longitudinal oscillations of a viscoelastic rope with moving bound-
aries with due account of the damping forces. The initial conditions and the external
load are considered random. To obtain the characteristics of the r.v.’s of stochastic
oscillations, one has to find statistical estimates for the solution of a system of random
integro–differential equations. To this end, the relaxation kernel can be taken as an
exponential function with a random component. With the help of a difference ker-
nel, one can reduce the problem to a system of stochastic differential equations. The
coefficients are evaluated via the statistical numerical Monte Carlo method (see [2]).
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V.N. Litvinov, N.N. Gracheva, N.B. Rudenko (Don State Technical Uni-
versity, Rostov-on-Don, Russia; Azov-Black Sea Engineering Institute of Don State
Agrarian University, Zernograd, Russia). Probabilistic estimates of solutions of
grid equations in heterogeneous computing systems. 12

The purpose of our study is to give a definition of functional dependencies of the
execution time for solution of systems of linear algebraic equations (SLAEs) by a mod-
ified alternating-triangular iterative method (ATIM) on the dimension of fragments
of a uniform 3D grid. Our studies are carried out for the most time-consuming stages
of solving grid equations by ATIM, which involve solution of SLAEs with lower- and

12Supported by the Russian Science Foundation (grant 21-71-20050).
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upper-triangular matrices [1] on the K-60 supercomputing system at Keldysh Insti-
tute of Applied Mathematics. Calculation time for solution of an SLAE is estimated
via a sample characteristic of order statistics. The following result is proved.

Theorem. Calculation time for the lower-triangular stage of the solution
of an SLAE by ATIM in parallel mode is given by Tmatm =

∑Ns

s=1 max(Ts), where s
and Ns are, respectively, the step number and the number of steps of a parallel-pipeline
computational process, and Ts is the vector containing the values of time spent for
evaluation of fragments of the grid for all calculations at step s.
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